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Non–abelian gauge theories

Let Φ = (φ1, φ2, · · · , φr)T be a field in a representation R (dim R = r) of a Lie

group G (dim G = N). The field Φ may have other indices which are suppressed

for ease of presentation. In order to have a concrete example in mind, choose

Φ =

(
φ1

φ2

)
to be in the fundamental representation of the Lie group SU(2) (i.e.,

the j = 1
2

of SU(2)). In this example, N = 3 and r = 2.

Let Ta, a = 1, · · · , N be the generators of the Lie algebra in the representation

R. By definition, they are r× r Hermitian matrices which satisfy the Lie algebra

G

[Ta, Tb] = ifab
c Tc , (1)

where fab
c are the structure constants of the Lie algebra. The index structure of

the matrix is Ti
j, i, j = 1, · · · , r. Note that we use the indices from the beginning

of the alphabet, a, b, c, · · · for the generator index and and the middle letters

i, j, k, · · · for the representation index.

Exercise 1: Given that the generators of the Lie algebra satisfy the Jacobi iden-

tity, obtain a condition on the structure constants of the Lie algebra. Explicitly

verify that this is true for the case of SU(2).

Exercise 2: In the adjoint representation, r = N . Thus the representation

indices and the generator indices are the ‘same’. In this representation, the Ta

have a simple presentation in terms of the structure constants:

(Ta)b
c = −ifabc .

Show that the above Ta satisfy the Lie algebra G.

In the example we are considering, in the fundamental representation of

SU(2), the generators Ta = 1
2
σa, where σa are the Pauli matrices and the struc-

ture constants fab
c = εab

c. The a, b type indices are raised and lowered using the

metric

hab ≡ 2 TrF (TaTb)

where the the subscript F refers to choosing the matrices Ta in the fundamental

representation of the Lie algebra. One can show that in our example hab =

1



δab. One can choose the generators Ta such that the structure constant fabc is

completely antisymmetric in its three indices.

Under a local gauge transformation given by a group element g, the field Φ

transforms as Φ
′
= g Φ which in components is written as

φ′i(x) = g(x)i
j φj(x) . (2)

For a Lie group, the group element g can be written as

g(x) = exp[i θa(x) Ta] , (3)

where θa(x) are N parameters (angles) which specify a group transformation.

For infinitesimal transformations parametrised by δθa, one obtains

g(x) = 1 + iδθa(x) Ta +O(δθ2) . (4)

Note that by 1 in the above equation, we mean the r × r identity matrix.

It is of interest to write Lagrangians which are locally gauge invariant. The

simplest method is to consider a Lagrangian which is globally G-invariant i.e.,

L(Φ
′
, ∂µΦ

′
) = L(Φ, ∂µΦ), where Φ′ = g Φ. This Lagrangian is typically not

locally gauge invariant. This has to do with the fact that ∂µΦ does not transform

nicely (covariantly) under local gauge transformations. Explictly, one obtains

∂µΦ
′
= g (∂µΦ) + (∂µg) Φ . (5)

A minimal prescription is to replace all derivatives of Φ with covariant deriva-

tives of Φ. These are defined by

DµΦ ≡
(
∂µ − i [AaµTa]

)
Φ , (6)

where we have introduced a new field called the gauge field or the connection. In

the above equation the term in the square brackets can be written in terms of a

matrix valued gauge field Aµ ≡ [AaµTa].

Exercise 3: Show that for the case of SU(2), where Ta = 1
2
σa, the matrix valued

gauge field takes the form

Aµ =
1

2

(
A3
µ A1

µ − iA2
µ

A1
µ + iA2

µ −A3
µ

)

The transformation of the covariant derivative of Φ can be chosen to be iden-

tical to that of a simple derivative under global transformations:

D′µφ
′(x) = g(x) Dµφ(x) . (7)
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This fixes the tranformation of the gauge field to be

A′

µ = gAµg−1 + i g∂µg
−1 . (8)

Note that here g need not be infinitesimal. Thus the Lagrangian L(Φ, DµΦ) is

clearly invariant under local gauge transformations.

Exercise 4: Derive the transformation of the gauge field Aaµ (given in the above

equation) under local gauge transformations. What is the tranformation of the

gauge field under infinitesimal gauge transformations? This result can be iden-

tified with the covariant derivative of δθa in some representation. Identify the

representation. When G = U(1), compare the infinitesimal as well as the exact

versions. Is this always true? Explain.

Exercise 5: Consider the example where Φ is in the two dimensional representa-

tion of SU(2). Write the most general Lagrangian which is invariant under global

SU(2) transformations and involves upto two derivatives. Obtain the Noether

current corresponding to this transformation.

Exercise 6: Now make the Lagrangian locally gauge invariant by replacing all

derivatives by covariant derivatives. Regroup the locally gauge invariant La-

grangian into terms independent of the gauge field, terms linear in the gauge

field and terms quadratic in the gauge field, i.e.,

L(Φ, DµΦ) = L(Φ, ∂µΦ) + TrR(Lµ1Aµ) + TrR(Lµν2 AµAν) .

Is there any relation between Lµ1 and the Noether current derived in the previous

exercise?

The locally gauge invariant Lagrangian which we have constructed so far

does not involve any derivatives of the gauge field. We would like to include

new terms which involve derivatives of the gauge field subject to the conditions

that the terms are Lorentz scalars and are gauge invariant. For the case of

electromagnetism the only gauge invariant object is the field strength which was

used to construct the new terms to be added to the Lagrangian. A simple way

to obtain the analog of the field strength for a generic group G is to use the

following definition

Fµν Φ ≡ i[Dµ, Dν ] Φ (9)

Exercise 7: Show that

Fµν = ∂µAν − ∂νAµ − i[Aµ,Aν ] (10)
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Exercise 8: Show that under gauge transformations, the field strength Fµν is

generically not invariant but covariant, with the following tranformation law:

F ′

µν = g Fµν g−1 . (11)

This implies that F transforms in the adjoint representation of the group G.

Show that for G = U(1), this implies that the field strength is invariant. Further,

derive the infinitesimal transformation law from the finite one.

Exercise 9: Show that following are only two possible Lorentz and gauge invari-

ant terms which can be constructed from this field strength keeping in mind the

restriction on the number of derivatives.

(i) TrF (FµνFµν).

(ii) εµνρσ TrF (FµνFρσ).

It can be shown that term (ii) is a total derivative and can be written as ∂µΩµ.

Obtain an expression for Ωµ. Ωµ is called the Chern–Simons term. This plays a

special role in three dimensional gauge theories and in the context of the quantum

Hall effect.

Now one can write a gauge invariant Lagrangian which includes derivatives

of the gauge field as:

Ltotal = − 1

4e2
TrF (FµνFµν) + L(Φ, DµΦ) ,

= − 1

4e2
F a
µνF

b µνhab + L(Φ, DµΦ) , (12)

where Fµν = F a
µνTa. The coupling constant e introduced in the first term is like

the electric charge for the case of G = U(1). We have not included a term of

type (ii) in the Lagrangian since it is a total derivative. However, we will later

find the need to include such a term from purely topological considerations.
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