DEPARTMENT OF PHYSICS INDIAN INSTITUTE OF TECHNOLOGY, MADRAS

PH1020 Physics II

Problem Set 12

6.4.2020

Linear Vector Spaces

The basic mathematics references for this topic are the following:

- 1. J. Hefferon, *Linear Algebra*, Chapter 2. This book is freely available for download at the URL: http://joshua.smcvt.edu/linearalgebra/
- 2. M. Artin, Algebra, Chapters 3 and 4. Pearson Education India (Second Edition, 2015).
- 1. Using your favourite graphics package, generate these figures corresponding to the tip of electric field as a function of time on the y = 0 plane. These figures were generated using TikZ package for LaTeX.

$$\mathbf{E}(\mathbf{r},t) = \operatorname{Re}\left(\left[E_1\,\hat{e}_x + E_3\,\hat{e}_z\right]\,\exp\left(iky - i\omega t\right)\right)\,,\,$$

2. Recall the symmetric matrix $P(\theta)$ associated with a θ -polarizer.

$$P(\theta) = \begin{pmatrix} \cos^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin^2 \theta \end{pmatrix} .$$

Verify that

- (a) $P(\theta + \pi) = P(\theta)$.
- (b) $P(\theta)^2 = P(\theta)$. Explain the physical significance of this result.
- (c) Show that its eigenvalues are 0 and 1. Obtain and interpret the eigenvector with eigenvalue unity.
- (d) Verify that $P(\theta_1) \cdot P(\theta_2) P(\theta_2) \cdot P(\theta_1) \neq 0$ for $\theta_1 \theta_2 \neq n\pi/2$ for some $n \in \mathbb{Z}$. This implies that the ordering of linear polarizers matter in a sequential arrangement.

Now solve the following problems to familiarise yourself with the definitions of a linear vector space.

3. Let \mathbb{P} denote the set of complex vectors \mathcal{E} satisfying the condition

$$\mathbf{k}\cdot\boldsymbol{\mathcal{E}}=0,$$

where **k** is a constant vector in \mathbb{R}^3 . Verify that \mathbb{P} is a two-dimensional complex vector space.

- 4. Verify whether the following sets are linear vector spaces (over \mathbb{R}) with the obvious operations for $(+, \cdot)$. If yes, what is the dimension of the vector space?
 - (a) The set (with $a, b, c, d \in \mathbb{R}$ with $d \neq 0$)

$$\left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid ax + by + cz = d \right\}$$

- (b) The same set as part (a) above but with d = 0.
- (c) The set of complex numbers \mathbb{C} .
- (d) The set of $n \times n$ upper triangular matrices with real entries.
- (e) The set of solutions to the homogeneous second-order ordinary differential equation:

$$\frac{d^2f(x)}{dx^2} + a(x)\frac{df(x)}{dx} + b(x)f(x) = 0$$

- (f) The set \mathcal{P}_m which denotes the set of polynomials (in one variable) of degree $\leq m$.
- 5. Find a set of vectors that span a given subspace of a linear vector space.
 - (a) The subset of vectors $(x, y, z)^T \in \mathbb{R}^3$ such that 2x + 2y + z = 0.
 - (b) The subspace of $a_0 + a_1x + a_2x^2 + a_3x^3 \in \mathcal{P}_3$ such that $a_0 + a_1 = 0$ and $a_2 a_1 = 0$.
 - (c) The subspace $\mathcal{P}_3 \subset \mathcal{P}_4$.