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Green Functions for the Klein-Gordon operator

Suppose one is interested in obtaining solutions to the inhomogeneous Klein-
Gordon (KG) equation i.e., in the presence of a source.

(
� + m2

)
φ(x) = ρ(x) , (1)

where ρ(x) is the classical source which, in general, may be a function of space
and time coordinates. One standard way to solve this is by the method of Green

Functions. Consider the solution to the following equation:

(
� + m2

)
G(x, x′) = δ4(x − x′) . (2)

In other words, we look for a solution to a delta-function source located at a
point x′. This solution is referred to as the Green function for the Klein-Gordon
operator. Given G(x, x′), we can write a formal solution to the inhomogeneous
KG equation

φ(x) =

∫
d4x G(x, x′) ρ(x′) (3)

The student is encouraged to verify that this is indeed true. A few comments are
in order here:

• The solution is formal in the sense that the choice of Green function is
fixed by boundary conditions. This is reflected in the fact that one can
always add a solution of the homogeneous Klein-Gordon equation (i.e., the
KG equation without source) to a Green function to obtain another Green
function. Boundary conditions may be specified say, for instance, at spatial
(|~x| → ∞) and temporal infinities (|t| → ∞).

• Translation invariance in spacetime implies that G(x, x′) = G(x − x′), i.e.,
its functional dependence on x and x′ occurs only through their difference.

• The Green function is a Lorentz scalar. We will for instance show that the
advanced and retarded Green functions vanish outside the light-cone in a
special coordinate system where (t − t′) = (x0 − x

′0) = 0 and then extend
the result to all points x and x′ which are spacelike separated.
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Let us now solve for the Green function by considering the Fourier transform
of Eq. (2). We make the following substitutions

δ4(x − x′) =

∫
d4k

(2π)4
e−ik·(x−x′) and G(x − x′) =

∫
d4k

(2π)4
e−ik·(x−x′) G̃(k) .

Eq. (2) now becomes an algebraic equation in momentum space
(
k2 − m2

)
G̃(k) = −1 or G̃(k) =

−1

k2 − m2
(4)

Note that the second expression in the above equation is singular when k2 = m2,
i.e., when the four-momentum k satisfies the mass-shell condition. We will see
that different ways of handling the singularities will lead to inequivalent Green
functions. Using the second expression, we now obtain

G(x − x′) = −

∫
d4k

(2π)4

e−ik·(x−x′)

k2 − m2
. (5)

We still need to carry out the integrations to obtain the Green function. Let us
first do the integration over ω = k0. Writing k2 − m2 = w2 − w2

k, where wk ≡√
~k · ~k + m2, the above expression for the Green function takes the following

form:

G(x − x′) = −

∫ ∞

−∞

dω

∫
d3k

(2π)42ωk

(
e−ik·(x−x′)

ω − ωk
−

e−ik·(x−x′)

ω + ωk

)
. (6)

In order to deal with the singularities in carrying out the ω integration, we will
treat ω as a complex number and treat the integration as a contour integral
running along the real ω axis. The singularities on the contour are avoided by
pushing the singularities at ω = ±ωk infinitesimally away from the real axis. This
can be done in four ways:

(i) both singularities are in the LHP;

(ii) both singularities are in the UHP;

(iii) the singularity at −ωk is pushed to the UHP and the one at ωk is pushed
to the LHP;

(iv) the singularity at −ωk is pushed to the LHP and the one at ωk is pushed
to the UHP.

This is accomplished by adding a small imaginary term to each of the two terms
that appear in Eq. (6). This is shown below (ǫ is a infinitesimal small number
which we will set to zero after carrying out the ω integration)

G(x − x′) = −

∫ ∞

−∞

dω

∫
d3k

(2π)42ωk

(
e−ik·(x−x′)

ω − ωk ± iǫ
−

e−ik·(x−x′)

ω + ωk ± iǫ

)
. (7)
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(ǫ is an infinitesimal and positive quantity.) Above, the four possible signs are
reflected in the four different choices of sign indicated in the above expression.

We will next convert the open-contour in the ω plane into a closed contour by
adding a semi-circle at infinity that contributes zero to the integral. The semi-
circle may lie in either the UHP or the LHP. This is determined by the sign of
(t− t′). Let us consider the case when t > t′. Writing ω = |ω|eiϕ, the exponential
term gives e−i|ω|(t−t′) cos ϕ e|ω|(t−t′) sin ϕ. Clearly, when t > t′, the semi-circle in the
LHP is exponentially suppressed and becomes zero in the limit |ω| → ∞. Thus,
we obtain the following simple rule:

Close the contour in the LHP when t > t′ and in the UHP when t < t′

The retarded Green function takes causality into account. In Eq. (3), we
would like G(x−x′) to vanish when x′ lies outside the past light cone of the point
x. This way, only the ρ(x′) that lie in the past light cone will contribute to the
determination of φ(x). Let us consider points x′ that lie within the light-cone of
x. The sign of (t−t′) uniquely fixes whether the point x′ lies in the past or future
light cone. (The student is encouraged to verify that this is a Lorentz invariant
statement). Thus, we will need Gret(x − x′) = 0 when t < t′ or (t − t′) < 0.
This is the situation when we close the contour in the UHP and hence will be
obtained if no poles appear in the UHP. This is what happens in possibility
(i) discussed above. Thus we write,

Gret(x − x′) = −

∫ ∞

−∞

dω

∫
d3k

(2π)42ωk

(
e−ik·(x−x′)

ω − ωk − iǫ
−

e−ik·(x−x′)

ω + ωk − iǫ

)
. (8)

Carrying out the ω integration using the residue theorem, we get

Gret(x − x′) = θ(t − t′)

∫
d3k

(2π)3ωk

sin wk(t − t′) ei~k·(~x−~x′) (9)

(The step-function(or the Heavyside theta function) is defined as: θ(x) = 0 when
x < 0; θ(x) = 1 for x > 0 and θ(0) = 1

2
.) It is easy to see that when t = t′, the

retarded Green function vanishes. Thus, given that it is a scalar, it follows that
it vanishes whenever the separation of x and x′ is spacelike.

The advanced Green function vanishes in the past light cone and has
support in the future light cone. This is obtained from possibility (ii) discussed
above. Carrying out the ω integration, we get

Gadv(x − x′) = −θ(t′ − t)

∫
d3k

(2π)3ωk

sin wk(t − t′) ei~k·(~x−~x′) (10)
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(In carrying out the contour integration, the contour is clockwise and hence the
answer has an extra minus sign.) Again, we can check that the advanced Green
function vanishes for spacelike separations of x and x′.

Possiblity (iii) makes an appearance in QFT as the so-called Feynman prop-

agator which we will denote by GF (x − x′).

GF (x − x′) = −

∫
d4k

(2π)4

e−ik·(x−x′)

ω2 − ω2
k + iǫ

ǫ > 0 (11)

where we not carried out the ω integration but have indicated the shifting of
poles by the ǫ-prescription. It is not hard to see that the Feynman propagator is
an even function of its argument. We will see that one has

〈0|T (φ(x)φ(y))|0〉 = −iGF (x − y)

Exercises Carry out the rest of the integrations and obtain closed form ex-
pressions for the advanced and retarded functions. It is clear that the Green
function can be computed in arbitrary dimensions. See the article by V. Bal-
akrishnan referred to below. Unlike the advanced and retarded Green functions,
the Feynman propagator does not vanish outside the light cone. Consider the
case when x0 = 0 and |~x| = r. Then, one can show that(see the QFT book by
Itzykson and Zuber)

GF (0,x) ∼
ie−mr

(2π)2r2

(πmr

2

)1/2

,

where r = |x|.
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